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要 旨

(1) リーマン xi 関数  z と  1-z はそれぞれ次のようにアダマール積 に因数分解される。

 z  =   1-z /   ,  1-z  =   1- 1-z /
(2) 全複素平面上で関数等式  z  =  1-z  が成立する。

(3) 全複素平面上で  1-z /  =  1- 1-z /  が成立するのは、全ての Re  が 1/2
　　のとき 且つそのときに限る。

(4) かくして   1-z/ = z = 1-z = 1- 1-z / となり、リーマン予想は成立する。

１. 本稿で扱う関数

　本稿ではリーマンゼータ関数及びリーマン xi 関数を扱う。それらはそれぞれ次式で定義される。

(0.0)  z  = 
1z

1
 + 

2z

1
 + 

3z

1
 + 

4z

1
 + 

(0.1)  z  = -z 1-z 
-

2

z

 2
z

 z

以下においてこれらを単に「ゼータ関数」及び「 xi 関数」と呼ぶことにする。

なお、これらの零点は臨界領域 0 < Re z  < 1 においては同値であることが知られている。

２.  z や  z の零点の記法

　ゼータ関数  z や xi 関数  z の零点  は 通常 次のように記述されている。

Σ
 

1
,　Π

  1- 
z

但し、   は全ての零点に亘る。

しかし、この記法は概念的且つ曖昧であり、実際の計算に用いることが出来ない。

(1) 複素数表記

　１９１４年、ハーディとリトルウッドは 臨界線上の零点が無限個存在することを証明した。このこと

は、臨界領域内の零点が無限個存在することを意味している。それ故、本稿では次記法を用いる。

Σ
k=1



k

1
,   Π

k=1



 1- k

z

(2) 実部・虚部別表記

　　しかし、(1) の記法でも 零点 k の実部や虚部を詳細に調べるのは困難である。そこで xi 関数

が共役複素根を持つことに着目し、 k   k =1,2,3,  を次のように置き換える。

2r-1 = xr- i yr  ,  2r = xr+ i yr     r =1,2,3,  yr > 0

　これを用いれば、(1) の記述例は次のように書き換えることが出来る。

Σ
r=1



 xr - i yr

1
+

xr + i yr

1
   ,   Π

r=1



 1-
xr - i yr

z
 1-

xr + i yr

z
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３. リーマン予想の証明

定理 ３・１ ( アダマール積 ) 

　 xi 関数  z 及び  1-z はその零点 k   k =1,2,3,  によってそれぞれ次のように因数分解

される。

(0.1)  z  = -z 1-z 
-

2

z

 2
z

 z  = Π
k=1



 1- k

z

(0.2)  1-z  = -z 1-z 
-

2

1-z

 2
1-z

 1-z  = Π
k=1



 1- k

1-z

証明

　１８９３年、アダマールは次のような定理を示した。

 z  = 
2 z -1
 2/e z

Π
k=1



 1-
k

z
e k

z

Π
n =1



 1+
2n
z

e
-

2n

z

ガンマ関数に関するワイエルシュトラウスの表示式は

Π
n =1



 1+
2n
z

e
-

2n

z

 = 
 1+z/2

e - z/2

これを上式の右辺に代入すれば、

 z  = 
2 z -1
 2/e z

 1+z/2
e - z/2

Π
k=1



 1-
k

z
e k

z

  = 
z -1

e z log2 e -z

2 1+z/2
e - z/2

Π
k=1



 1-
k

z
e k

z

  = 
 z -1 z z/2

1
e
 log2-1-

2


z

Π
k=1



 1-
k

z
e k

z

これより

-z 1-z  2
z

 z  = e
 log2-1-

2


z

Π
k=1



 1-
k

z
e k

z

両辺に-z/2 = e-(zlog)/2 を乗じれば

-z 1-z 
-

2

z

 2
z

 z  = e
 log2 -

2

log
-1-

2


z

Π
k=1



 1-
k

z
e k

z

i.e.

(9.1)  z  = e
 log2 +

2

log
 -1-

2


z

Π
k=1



 1-
k

z
e

Σ
k=1



k

z

ここで

Π
k=1



 1-
k

z
 = Π

r=1



 1-
xr - i yr

z
 1-

xr + i yr

z
 = Π

r=1



 1-
xr

2+ yr
2

2xr z
+

xr
2+ yr

2

z 2
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Σ
k=1



k

z
 = Σ

r=1



 xr  i yr

z
+

xr  i yr

z
 = Σ

r=1



xr
2+ yr

2

2xr z

と表せば (9.1) は

(9.1')  z  = e
 log2 +

2

log
-1-

2


z

Π
r=1



 1-
xr

2+ yr
2

2xr z
+

xr
2+ yr

2

z 2

e
Σ
r =1



xr
2 + yr

2

2xr z

更に xn+ i yn   n =1,2,3,  のうち、実部が 1/2 であるものを 1/2 i yr   r =1,2,3,  、 実部が

1/2 でないものを 1/2s  is   0 < s < 1/2 s =1,2,3,  とすれば、(9.1') は次のようになる

(9.1")  z  = e
 log2 +

2

log
-1-

2


z

Π
r=1



 1-
1/4+yr

2

z
+

1/4+yr
2

z 2

e
Σ
r =1



1/4 +yr
2

z

 Π
s=1 1-

 1/2s
2s

2

 12s z
+
 1/2s

2s
2

z 2

e
Σ
s =1 1/2s

2s
2

 12s z

 Π
s=1 1-

 1/2s
2s

2

 12s z
+
 1/2s

2s
2

z 2

e
Σ
s =1 1/2s

2s
2

 12s z

(9.1') と (9.1") の両辺に z =1 を代入すれば、

(9.2') ( )1 = 1 = e
log2 +

2

log
-1-

2



Π
r=1



 1-
xr

2+ yr
2

2xr - 1
e

Σ
r =1



xr
2 + yr

2

2x

(9.2") ( )1 = 1 = e
log2 +

2

log
-1-

2



  Π
s=1 1+

 1/2s
2s

2

2s  1-
 1/2s

2s
2

2s

 e
Σ
r =1



1/4 +yr
2

1
+Σ

s =1  1/2s
2s

2

12s
+
 1/2s

2s
2

12s

これらより

(9.3) Π
r=1



 1-
xr

2+ yr
2

2xr-1
 = Π

s=1 1+
 1/2s

2s
2

2s  1-
 1/2s

2s
2

2s

(9.4) e xr
2 + yr

2

2xr

 = e
Σ
r =1



1/4 +yr
2

1
+Σ

s =1  1/2s
2s

2

12s
+
 1/2s

2s
2

12s

ここで都合の良いことに、

 1+
 1/2s

2s
2

2s  1-
 1/2s

2s
2

2s

= 1 + 
 1/2s

2s
2

2s
 - 
 1/2s

2s
2

2s
 - 
 1/2s

2s
2

2s

 1/2s
2s

2

2s

= 1 + 
 1/2s

2s
2

2s

 1/2s
2s

2

2s
 - 
 1/2s

2s
2

2s

 1/2s
2s

2

2s

= 1
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となるから (9.3), (9.4) は次のようになる。

(9.3') Π
n =1



 1-
xn

2+ yn
2

2xn-1
 = 1  i.e. Π

r =1



 1-
xr- i yr

1

 1-
xr+ i yr

1
= Π

k=1



 1-
k

1
= 1

(9.4') Σ
n =1



xn
2+ yn

2

2xn
 = Σ

r =1



1/4+ yr
2

1
+Σ

s =1  1/2s
2s

2

12s
+
 1/2s

2s
2

12s

(9.3') を (9.2') に代入すれば、

( )1  = 1 = e
log2 +

2

log
 -1-

2



e
Σ
r =1



xr
2 + yr

2

2x

 = e
log2 +

2

log
 -1-

2



e
Σ
k=1



k

1

これより

(9.5) Σ
k=1



k

1
 = 1+

2


- log2 -
2

log
 = 0.0230957

従って

e
Σ
k=1



k

z

 = e 1 +
2


- log2-
2

log
z

これを (9.1) の右辺に代入すれば

( )z  = e log2 +
2

log
-1-

2


z

Π
k=1



 1-
k

z e 1 +
2


- log2-
2

log
z

i.e.

(0.1) ( )z  = Π
k=1



 1-
k

z

両辺は全複素平面上において正則であるから、 z を 1-z に置換して

(0.2) ( )1-z  = Π
k=1



 1-
k

1-z

Q.E.D.

Note .

　  z  = 1+A1z 1+A2z 2+A3z 4 +  と展開したとき、ヴィエタの公式 により次が成立する。

(9.5) Σ
k=1



k

1
 = -A1 = - log 2+

2
log

-1-
2


 = -( )-0.0230957

定理 ３・２ （関数等式）

　 xi 関数が次のようであるとする。

(0.1)  z  = -z 1-z 
-

2

z

 2
z

 z

すると、全複素平面上において次式が成立する。

(0.3)  z  =  1-z

証明

　リーマンによれば、複素平面上の２点を除いて次が成立する。
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
-

2

z

 2
z

 z  = 
-

2

1-z

 2
1-z

 1-z Rez  0 ,1

z 1-z  =  1-z  1- 1-z

これらを (0.1) の右辺に代入すれば、

 z  = - 1-z  1- 1-z 
-

2

1-z

 2
1-z

 1-z  =  1-z

 z は全複素平面上で正則であるから、(0.3) も全複素平面上で成立する。

Q.E.D.

定理 ３・３ ( アダマール積の等式 )

　 xi 関数  z 及び  1-z はその零点 k   k =1,2,3,  によってそれぞれ次のように因数分解

されているとする。

(0.1')  z  = Π
k=1



 1- k

z

(0.2')  1-z  = Π
k=1



 1- k

1-z

すると、 Re k  = 1/2    k =1,2,3,ならば かつ、このときにのみ、全複素平面上で次式が成立

する。

(0.4) Π
k=1



 1- k

z
 = Π

k=1



 1- k

1-z

証明

　零点 k を次のように実部・虚部別に表わす。

2r-1 = xr- i yr  ,  2r = xr+ i yr    r =1,2,3,  yr > 0

すると、(0.4) は

(0.4') Π
r=1



 1-
xr- i yr

z
 1-

xr+ i yr

z
 = Π

r=1



 1-
xr- i yr

1-z
 1-

xr+ i yr

1-z

I．十分性

　もし、 xr = 1/2    r =1,2,3,  ならば、(0.4') は

(0.4") Π
r=1



 1-
1/2- i yr

z
 1-

1/2+ i yr

z
 = Π

r=1



 1-
1/2- i yr

1-z
 1-

1/2+ i yr

1-z

このペアの両辺の根を求めるよう。すると、、

左辺 1-
1/2- i yr

z
 = 0     ,   1-

1/2+ i yr

z
 = 0 r =1,2,3,

右辺 1-
1/2- i yr

1-z
 = 0     ,   1-

1/2+ i yr

1-z
 = 0 r =1,2,3,

これらより、

左辺 z = 1/2- i yr     ,    z = 1/2+ i yr r =1,2,3,

右辺 z = 1/2+ i yr     ,     z = 1/2- i yr r =1,2,3,
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左辺と右辺の零点は交差方向に一致している。つまり、(0.4") は恒等的に成立している。このことは

(0.4) が恒等的に成立していることと同義である。

　この結果、定理 ３・１ と 定理 ３・２ により、全複素平面上で次が完結する。

Π
k=1



 1- k

z
 =  z  =  1-z  = Π

k=1



 1- k

1-z

そして、ヴィエタの公式 (9.5) より 次の等式が成立する。

(9.5') Σ
r=1



 1/2- i yr

1
+

1/2+ i yr

1
 = 1+

2


- log2 -
2

log
 = 0.0230957

II．必要性

　ここで、臨界領域内において 臨界線上の零点以外に 臨界線外の零点が存在したと仮定する。

このような零点の 1 組は次の 4 個から成るべきことが知られている。

1/2-s  is  , 1/2+s  is   0 < s < 1/2  ,  s > 0

すると ヴィエタの公式 (9.5) より、次式が成立しなければならない。

Σ
r=1



 1/2- i yr

1
+

1/2+ i yr

1
 +Σ

s=1 1/2-s  is

1
+

1/2-s  is

1

　　 +Σ
s=1 1/2+s  is

1
+

1/2+s  is

1
 = 1+

2


- log2 -
2

log

i.e.

(9.5") Σ
r=1



 1/2- i yr

1
+

1/2+ i yr

1
 +Σ

s=1  1/2s
2s

2

12s
+
 1/2s

2s
2

12s

= 1+
2


- log2 -
2

log
 = 0.0230957

然るに、 0 < s < 1/2  に対して 0 < 12s < 12s < 2  であるから、

Σ
s=1  1/2s

2s
2

12s
+
 1/2s

2s
2

12s
 > 0

それ故、(9.5") は (9.5') に矛盾する。よって 臨界領域内では臨界線外の零点が存在してはなら

ない。その結果、 (0.4) は Re k  = 1/2    k =1,2,3,  のときにのみ成立することになる。

III．かくて、 Re k  = 1/2    k =1,2,3,  は (0.4) のための必要十分条件である。

Q.E.D.

　以上、３つの定理により、 Re k  = 1/2    k =1,2,3,  ならば かつ、このときにのみ、次の

四段論法 が全複素平面上で完結する。

Π
k=1



 1- k

z
 =  z  =  1-z  = Π

k=1



 1- k

1-z
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かくして、リーマン予想は定理として成立する。

2025.12.18 Uploarded

2026.01.08  Supplemented Proof of Theorem 3.1.
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