
８ 完備化されたディリクレベータのベキ級数

　  z ,a をフルヴィッツゼータ関数、  z をガンマ関数とするとき、ディリクレベータ関数  z
及び完備化されたディリクレベータ関数 z はそれぞれ次式で表される。
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1
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1
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 z  =  
2 1+z

 2
1+z

 z (0.1)

　２つの式を観察すると、 2z と z に含まれる 4z が重複していることが判る。つまり (0.1) をそのまま

級数に展開すると無駄な級数を含むことになる。これは計算速度に多大な影響を与える。そこで、(0.1) 

を次のように加工して 4z を予め除いておく。

補題 ８・０

　  z ,a をフルヴィッツゼータ関数、  z をガンマ関数とするとき、 z は次で表される。

 z  = 4 2 
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  z,
4
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4
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証明

　(0.0) を (0.1) に代入して

 z  =  
2 1+z

 2
1+z
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ここで
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  = 41+z 2 
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これを右辺に代入して
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i.e.

 z  = 4 2 
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Q.E.D.

８・１  z の 1 の周りのテイラー級数

　(0.1') を構成する３つの関数をそれぞれテイラー級数に展開し、それらのコーシー積を z の

テイラー級数とする。

補題 ８・１・１

　全複素平面上で次が成立する。

 2 
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 = 
4
1
Σ
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
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( )-1 r
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2
1
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 z -1 r (9.1)
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証明

2 
1

 = e
log

2 
1

 = e
-log2 -

2

1
log

であるから、

f z  =  2 
1 1+z

 = e
- log 2 +
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1
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拙著 公式 ９・２・２ 「 09 高階微分 」 （超微積分） によｆれば

 eax+b  n =  a
1 -n

eax+b

これを上式に適用すると

f( )r
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z =1 のとき
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2
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よって
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Q.E.D.

補題 ８・１・２

　全複素平面上で次が成立する。

 z ,
4
1

- z ,
4
3

 = Σ
r=0
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3
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但し、 r  a は一般スティルチェス定数で次のように定義される。

r  a  = lim
m Σ

k=0

m

k +a

log r
 k +a

-
r +1

log r+1
 m+a r = 0,1,2,    

a  0,-1,-2,

証明

フルヴィッツ・ゼータ関数  z ,a は一般スティルチェス定数 r  a を用いて次のようにローラン展開

される。

 z ,a  = 
z -1
1

 + Σ
r=0


( )-1 rr a r !

 z -1 r

これより

 z ,
4
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3
r !
 z -1 r

両者の差を求めることによって与式を得る。

Q.E.D.
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補題 ８・１・３

　  z をガンマ関数、n z をポリガンマ関数、 Bn,k f1 , f2 , を Bell 多項式とするとき、 z =1 を

中心とする半径 2 の円内で次が成立する。

 2
1+z

 = Σ
r=0



2r r !

gr( )1
 z -1 r (9.3)

但し、

gr( )1  = 
1  r = 0

Σ
k=1

r

Br,k 0( )1  , 1( )1  , , r-1( )1 r = 1,2,3,

証明

　拙著 公式 １２・１・１ 「 １２ ガンマ関数とその逆数の級数展開 」 （アラカルト） は次のようであった。

 z をガンマ関数、n z をポリガンマ関数、 Bn,k f1 , f2 , を Bell 多項式とするとき、

 z  =  a + Σ
n=1



n !
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但し
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Bn,k 0 a  , 1 a  , , n-1 a n =1,2,3,

　これを用いれば、   1+z /2 は次のようにテイラー展開できる。
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Br,k 0 a  , 1 a  , , r-1 a r =1,2,3,

a =1  と置けば、

 2
1+z

 = ( )1 + Σ
r=1



r !
( )r ( )1

 2
z -1 r

(9.4)

( )r ( )1  = ( )1 Σ
k=1

r

Br,k 0( )1  , 1( )1  , , r-1( )1 r =1,2,3,

ここで、 gr( )1 を次のように置く。

gr( )1  = 
1 r = 0

Σ
k=1

r

Br,k 0( )1  , 1( )1  , , r-1( )1 r = 1,2,3,

すると

( )r ( )1  = ( )1 gr( )1 r =0,1,2,

であるから、これを (9.4) に代入して、

 2
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 = ( )1 + ( )1 Σ
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
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gr( )1
 2

z -1 r

i.e.

 2
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 = Σ
r=0


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 z -1 r   ( )1 =1

Q.E.D.
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　以上を総合すると次の定理が得られる。

定理 ８・１・４ （ (z) の 1 の周りのテイラー級数）

　完備化されたディリクレベータ関数 z とそのテイラー級数が次のようであるとする。

 z  =  
2 1+z

 2
1+z

 z  = Σ
r=0


Br  z -1 r  (1.1)

すると、これらの係数 Br   r =0,1,2,3,  は次で与えられる。

Br = 
1
Σ
s=0

r

Σ
t=0

s

 r -s !
( )-1 r-s

 log 2 +
2
1

log
r-s

 s -t !
( )-1 s-t

 s-t  4
1

-s-t  4
3

2t t!
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   (1.2)

gr( )1  = 
1  r = 0

Σ
k=1

r

Br,k 0( )1  , 1( )1  , , r-1( )1 r = 1,2,3,

但し、 r( )z はポリガンマ関数、 Br,k f1 , f2 , は Bell 多項式、 r  a は次なる一般スチルチェス

定数である。

r  a  = lim
m Σ

k=0

m

k +a

log r
 k +a

-
r +1

log r+1
 m+a r = 0,1,2,    

a  0,-1,-2,

証明

　補題 ８・０ より

 z  = 4 2 
1 1+z

  z,
4
1

- z,
4
3

 2
1+z

(0.1')

補題 ８・１・１、補題 ８・１・２ 及び 補題 ８・１・３ より、
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1 1+z

 = 
4
1
Σ
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
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 log 2 +
2
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log 
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 z -1 r
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4
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4
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 r 4
1

-r 4
3
 z -1 r

 2
1+z

 = Σ
r=0



2r r !

gr( )1
 z -1 r

但し、

gr( )1  = 
1  r = 0

Σ
k=1

r

Br,k 0( )1  , 1( )1  , , r-1( )1 r = 1,2,3,

３つの補題の式を(0.1')の右辺に代入すれば、

 z  = 4
4
1
Σ
r=0



r!
( )-1 r

 log 2 +
2
1

log 
r

 z -1 r

 Σ
r=0



r !
( )-1 r

 r 4
1

-r 4
3
 z -1 r  Σ

r=0



2r r !

gr( )1
 z -1 r

拙著 公式 １・１・２ 「 01 無限級数の累乗 」 （無限次方程式） によると、

 Σ
r=0


ar z

r  Σ
r=0


br z

r  Σ
r=0


cr z

r  = Σ
r=0



Σ
s=0

r

Σ
t=0

s

ar-s bs-t ct  z
r
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よって、

ar = 
r!

( )-1 r

 log 2 +
2
1

log 
r

   ,   br = 
r !

( )-1 r

 r 4
1

-r 4
3

   ,   cr = 
2r r !

gr( )1

と置けば、

 z  = 
1
Σ
r=0



Σ
s=0

r

Σ
t=0

s

 r -s !
( )-1 r-s

 log 2 +
2
1

log
r-s

 s -t !
( )-1 s-t

 s-t  4
1

-s-t  4
3

 
2t t!

gt( )1
 z -1 r

そこで、

Br = 
1
Σ
s=0

r

Σ
t=0

s

 r -s !
( )-1 r-s

 log 2 +
2
1

log
r-s

 s -t !
( )-1 s-t

 s-t  4
1

-s-t  4
3

2t t!

gt( )1
 (1.2)

と置いて (1.1) の右辺を得る。

Q.E.D.

例

　(1.2) において Br は一般スチルチェス定数 r  a と中間的な定数 gr( )1 で表されているが、 g( )1

はポリガンマ関数r( )1 の多項式であるので、最終的に Br は r  a とr( )1 で表示される。

数式処理ソフト Mathematica を用いて最初の幾つかを例示すると次のとおり。
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図

　(1.1) の両辺を図示すると次のとおり。左辺（関数）が青で右辺（級数）が橙である。右辺は z -1 8

まで計算されているが、両辺は重なっていて左辺（青）は全く見えない。

　ガンマ関数 (9.3) の特異点はディリクレベータ関数 (0.0) の自明な零点で相殺されて消滅しており、

従って収束半径は∞である。
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８・２  z のマクローリン級数

　  (z)  のマクローリン級数は 1 の周りのテイラー級数から関数等式を用いて驚くほど簡単に得られる。

定理 ８・２・１ （ (z) のマクローリン級数）

　完備化されたディリクレベータ関数 z とそのマクローリン級数が次のようであるとする。

 z  =  
2 1+z

 2
1+z

 z  = Σ
r=0


Ar z

r  (2.1)

すると、これらの係数 Ar   r =0,1,2,3,  は次で与えられる。

Ar = 
1
Σ
s=0

r

Σ
t=0

s

 r -s !
( )-1 -s

 log 2 +
2
1

log
r-s

 s -t !
( )-1 s-t

 s-t  4
1

-s-t  4
3

2t t!

gt( )1
   (2.2)

gr( )1  = 
1  r = 0

Σ
k=1

r

Br,k 0( )1  , 1( )1  , , r-1( )1 r = 1,2,3,

但し、 r( )z はポリガンマ関数、 Br,k f1 , f2 , は Bell 多項式、 r  a は次なる一般スチルチェス

定数である。

r  a  = lim
m Σ

k=0

m

k +a

log r
 k +a

-
r +1

log r+1
 m+a r = 0,1,2,    

a  0,-1,-2,

証明

　定理 ８・１・４ より

Br = 
1
Σ
s=0

r

Σ
t=0

s

 r -s !
( )-1 r-s

 log 2 +
2
1

log
r-s

 s -t !
( )-1 s-t

 s-t  4
1

-s-t  4
3

2t t!

gt( )1
   (1.2)

 z  =  
2 1+z

 2
1+z

 z  = Σ
r=0


Br  z -1 r  (1.1)

(1.1) において z を 1-z に置換すれば

 1-z  =  
2 1+1- z

 2
1+1-z

 1-z  = Σ
r=0


Br  -z r  (9.5)

拙著 公式 ４・１・１ 「 04 完備化されたディリクレ・ベータ 」 によれば

 
2 1+z

 2
1

+
2
z

 z  =  
2 2-z

 2
1

+
2

1-z
 1-z

それ故、 (1.1) と (9.5) の中辺（関数）は等しくなり、全複素平面上で次なる関数等式が成立する。

 z  =  1-z

従って、 (1.1) と (9.5) の右辺（級数）は次のようになる。、

Σ
r=0


Br  z -1 r = Σ

r=0


Br  -z r = Σ

r=0


( )-1 rBr z

r = Σ
r=0


Ar z

r

つまり Ar  = ( )-1 rBr    r =0,1,2,  である。

そこで、(1.2) に ( )-1 r を乗じれば右辺の最初の符号は

( )-1 r( )-1 r-s = ( )-1 -s

かくて (2.2) を得る。

Q.E.D.
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例

　数式処理ソフト Mathematica を用いて Ar の最初の幾つかを例示すると次のとおり。

前節の Br  と比べると、奇数項の符号が反転していることが分かる。

 

確認計算
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Note

　マクローリン級数を基準にすると、 z は次のようになる。

 z  = Σ
r=0


Ar z

r = Σ
r=0


Ar  1-z r = Σ

r=0



 -z rAr z -1 r = Σ
r=0


Br  z -1 r

つまり、 z のマクローリン級数において z を 1-z に置換した級数は、 z の 1 の周りのテイラー

級数である。そして両者の係数は偶数項では同じで奇数項では符号のみ異なる。面白い性質である。

更に興味深いのは、両級数の展開の中心点 0,1 が臨界領域の左右の端点であることである。

　これらは関数等式によってもたらされたものである。従って、完備化されたリーマンゼータ関数  z
においてもこれらの関係は成立する。
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