
09 完備化されたディリクレベータの李係数

要 旨

(1) 完備化されたディリクレベータ関数 z についても李係数 n   n =1,2,3,  が定義できる。

それらは  z の構成要素で表現され、再帰計算によって値が得られる。

(2) 李係数 n   n =1,2,3,  は z のアダマール積によっても定義できる。

それらは  z の共役零点 xr  i yr    r =1,2,3,  によって表示出来る。

(3) 臨界線 xr = 1/2    r =1,2,3,上において、李係数 n   n =1,2,3,  は実数の平方和で表される。つまり、

臨界線上の李係数は李の基準を満たす。

実際、臨界線上の零点 10000 個を用いて計算した李係数は (1) の再帰計算の値とほぼ一致した。

序 説

１. 本稿で扱う関数

本稿ではディリクレベータ関数  z 及び完備化されたディリクレベータ関数 z を扱う。それらはそれぞれ

次式で定義される。
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なお、これらの零点は臨界領域 0 < Re z  < 1 においては同値であることが知られている。

２. 零点の逆数の和や積に関する記法

ディリクレベータ関数の零点の逆数の総和や積は一般に次のように記述される。
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但し、   は全ての零点に亘る。

これらの記法はこの限りでは有効である。しかし、これらの記法ではこの半多重級数等を記述出来ない。

例えば、 1
3

を強いてこの記法で表せば次のようになろう。
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但し、２重和と３重和において は重複しないものとする。

　これらの記法は不便な上に実計算が不可能である。そこで本章では次の記法を用いることにする。

(1) 複素数表記
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(2) 実部・虚部別表記

しかし、(1) の記法でも 零点 k の実部や虚部を詳細に調べるのは困難である。そこで z が共役複素根

を持つことに着目し、 k   k =1,2,3,  を次のように置き換える。

1 = x1 i y1  ,  2 = x1 i y1  ,  3 = x2 i y2  ,  4 = x2 i y2  ,  5 = x3 i y3  ,  6 = x3 i y3  , 

　これを用いれば、(1) の記述例は次のように書き換えることが出来る。
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９・１ 李の基準 と 李係数

　　ディリクレベータ関数  z に関する李の基準は次のようである。

李の基準

　ディリクレベータ関数  z に関するリーマン仮説は次の不等式と同値である。
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　ディリクレベータ関数  z の非自明な零点を  とするとき、李係数 n は次と同値である。

李係数 n
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但し、   は全ての零点に亘る。

この式は上記の但し書きの右辺とn の定義式から導出される。

　最初の幾つかを展開すると次のとおり。
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　ここで、序説の記法を用いれば、李係数 n は次のように記述できる。

補題 ９・１・１

　ディリクレベータ関数  z の非自明な零点を r1  r1 = 1,2,3, とするとき、

李係数 n    n = 1,2,3,  は次で表される。
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李係数の半多重級数表示

　さて、 1 , 2 , 3 ,   は 次の半多重級数で表すことが出来る。
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それには先ず次の漸化式が必要である。

補題 ９・１・２

　 n を 2 以上の自然数とするとき、収束する無限級数について次式が成立する。
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n  2  のとき (1.2n)の第 3 項は無視。

証明

　拙著 定理 ５・２・２ 「 05 冪級数と半多重級数 」（無限次方程式）は次のようであった。

定理 ５・２・２ （ 再掲 ）

　 n を 2 以上の自然数とするとき、収束する無限級数について次式が成立する。
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この定理において arn
を 1/rn

 に置換して、補題 ９・１・２ を得る。

Q.E.D.

他方、補題 ９・１・２ の半多重級数と z のマクローリン級数の係数との間には次なる関係がある。

補題 ９・１・３

関数 z とそのマクローリン級数が次のようであるとする。
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すると、 z の零点 r1 
  r1 = 1,2,3,について次式が成立する。
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証明

 z はその零点 r1 
  r1 = 1,2,3,によって次のように完全に因数分解される。
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拙著 公式 ３・２・１ 「 ３ 無限次方程式における根と係数 」 （無限次方程式）によれば、無限次方程式においても

根と係数の関係が成立し、与式を得る。

Q.E.D.

そして、これらの An    n =1,2,3,4,  の値は z を構成する関数  z  ,  z の高階微係数及び  に

よって与えられる。即ち、

補題 ９・１・３ の係数 Ar  r =1,2,3,は 拙著 定理 ８・２・１ 「 08 完備化されたディリクレベータのベキ級数 」で

与えらる。これを再掲すると次のとおり。

定理 ８・２・１ （ 再掲 ）

完備化されたディリクレベータ関数 z とそのマクローリン級数が次のようであるとする。
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すると、これらの係数 Ar   r =0,1,2,3,  は次で与えられる。
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Br,k 0( )1  , 1( )1  , , r-1( )1 r = 1,2,3,
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但し、 r( )z はポリガンマ関数、 Br,k f1 , f2 , は Bell 多項式、 r  a は次なる一般スチルチェス定数である

r  a  = lim
m Σ
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m
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log r
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-
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a  0,-1,-2,

　数式処理ソフト Mathematica を用いて Ar の最初の幾つかを計算すると、次のようになる。

 



 

　補題 ９・１・１ ～ 補題 ９・１・３ 及び 定理 ８・２・１ を総合すると次の定理が得られる。

定理 ９・１・４

　ディリクレベータ関数  z の非自明な零点を r1  r1 = 1,2,3, とするとき、李係数 n  n = 1,2,3,

は次で表される。
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Br,k 0( )1  , 1( )1  , , r-1( )1 r = 1,2,3,

但し、 r z はポリガンマ関数、 Br,k f1 , f2 , は Bell 多項式、 r  a は一般スチルチェス定数である。
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証明

　補題 ９・１・１ と 補題 ９・１・２ より
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n-s-t

1
Ht +( )-1 n-s  n -s Hn-s (1.2n)

Hn = Σ
r1=1



Σ
 r2=r1+1



Σ
 r3=r2+1


 Σ

 rn=rn-1+1



r1 r2 r3
  rn

1
(1.Hn)

次に、補題 ９・１・３ より

Σ
r1=1



r1

1
 = -A1 (1.31)

これを (1.1n) と (1.2n) に代入して

n = -nA1 + Σ
k=2

n

( )-1 k-1 
n

k
Σ
r1=1



r1

k

1

Σ
r1=1



r1

n

1
 =  -A1

n - 2 -A1
n-2H2

- Σ
s=0

n -3

 -A1
s Σ

t =2

n -s-1

( )-1 t 

 Σ
r1=1



r1 
n-s-t

1
Ht +( )-1 n-s  n -s Hn-s 

次に、(1.Hn) と 補題 ９・１・３  (1.3n) より

Hn = ( )-1 n An n =2,3,4,

これらを上式に代入して

Σ
r1=1



r1

k

1
 =  -A1

k - 2 -A1
k-2A2 - Σ

s=0

k-3

 -A1
s Σ

t =2

k-s-1

 Σ
r1=1



r1 
k-s-t

1
At + k -s Ak-s 

Ar  ,  gr( )1 及び 但し書きは 定理 ８・２・１ より従う。

Q.E.D.

　定理 ９・１・４ の記述は見易いが、計算には不向きである。そこで、冪乗和を次のように置換する。

G1 =  -A1 ,     Gk = Σ
r1=1



r1

k

1
    k =2,3,4,

すると、再帰計算に適した次の定理が得られる。

定理 ９・１・５

　李係数 n  n = 1,2,3,  は次で計算できる。

n = -nA1 + Σ
k=2

n

( )-1 k-1 
n

k
Gk （ n =1  のとき 右辺の第 2 項は無視。）

G1 =  -A1

Gk =  -A1
k - 2 -A1

k-2A2 - Σ
s=0

k-3

 -A1
s Σ

t =2

k-s-1

Gk-s-t At + k -s Ak-s 

（ k  2  のとき 右辺の第 3 項は無視。）
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Ar = 
1
Σ
s=0

r

Σ
t=0

s

 r -s !
( )-1 -s

 log 2 +
2
1

log
r-s

 s -t !
( )-1 s-t

 s-t  4
1

-s-t  4
3

2t t!

gt( )1

gr( )1  = 
1  r = 0

Σ
k=1

r

Br,k 0( )1  , 1( )1  , , r-1( )1 r = 1,2,3,

但し、 r z はポリガンマ関数、 Br,k f1 , f2 , は Bell 多項式、 r  a は一般スチルチェス定数である。

　実際、数式処理ソフト Mathematica を用いて この定理を実行すれば、次のようになる。
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　n( )1 と n a に数値を与えて李係数 n  を計算すると次のようになる。

 

11 8.39856156

12 9.78922816

13 11.23628437

14 12.7283053

15 14.2545345

16 15.8051035

17 17.3712243

18 18.945349

19 20.521296

20 22.094333

21 23.661221

1 0.777839899618
2 0.310218089464
3 0.69457042132
4 1.22635973042

5 1.8994612040
6 2.7062506951
7 3.637783553
8 4.684003358
9 5.833975075
10 7.07613652

これらのうち、 1 はディリクレベータ関数の零点の逆数の和に等しい。（ OEIS  A360807 ）

cf.

　完備化されたリーマンゼータの李係数、例えば 3 は

3 = -
2
3

log  + 
2
3
0 2

3
+ 

4
3
1 2

3
+ 

16
1

2 2
3

+ 30 - 30
2  + 0

3 - 61 + 301 + 
2
3
2
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これは log   , n( )3/2 及び n の 3 グループに分離されている。他の n についても同様である。

それ故、再帰計算はスチルチェス定数 n のみについて行えば良かった。

　他方、、完備化されたディリクレベータの李係数は、上記で明らかなようにグループ分けすることが出来ない。

よって上記のように log   , n( )1 及び n a を一括して再帰計算する他は無い。
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９・２ 李係数の xr i yr による表示

　前節では完備化されたディリクレベータ関数のアダマール積から得られる李係数が次式で示された。

n = Σ
  1- 1- 

1 n

但し、   は全ての零点に亘る。

本節では、この李係数を完備化されたディリクレベータ関数の共役零点 xr i yr で表示する。

補題 ９・２・１

　共役複素数 xr i yr について次が成立する。

 xr - i yr

1 1 

+  xr + i yr

1 1

 =  
xr

2+ yr
2

 2xr
1

(9.1)

 xr - i yr

1 2 

+  xr + i yr

1 2

 = 
 xr

2+ yr
2 2

 2xr
2

 -  
 xr

2+ yr
2 1

2 2xr
0

(9.2)

 xr - i yr

1 3 

+  xr + i yr

1 3

 = 
 xr

2+ yr
2 3

 2xr
3

 - 
 xr

2+ yr
2 2

3 2xr
1

(9.3)

 xr - i yr

1 4 

+  xr + i yr

1 4

 = 
 xr

2+ yr
2 4

 2xr
4

 - 
 xr

2+ yr
2 3

4 2xr
2

  + 
 xr

2+ yr
2 2

2 2xr
0

(9.4)

 xr - i yr

1 5 

+  xr + i yr

1 5

 = 
 xr

2+ yr
2 5

 2xr
5

 - 
 xr

2+ yr
2 4

5 2xr
3

 + 
 xr

2+ yr
2 3

5 2xr
1

(9.5)

 xr - i yr

1 6 

+  xr + i yr

1 6

 =  
 xr

2+ yr
2 6

 2xr
6

-
 xr

2+ yr
2 5

6 2xr
4

+
 xr

2+ yr
2 4

9 2xr
2

-
 xr

2+ yr
2 3

2 2xr
0

(9.6)

     

 xr - i yr

1 s 

+  xr + i yr

1 s

 = Σ
t=0

 s/2

( )-1 t  
s -t

t
+ 

s -t -1

t -1  xr
2+ yr

2 s-t

 2xr
s-2t

(9.s)

証明

１乗和と１乗積 

xr + i yr

1
+

xr - i yr

1
 = 

xr
2+ yr

2

2xr
(9.1)

xr + i yr

1
xr - i yr

1
 = 

xr
2+ yr

2

1
(9.１ｐ)

２乗和 

 xr + i yr

1
+

xr - i yr

1 2

 =  xr + i yr

1 2 

+  xr - i yr

1 2

 + 2
xr + i yr

1
xr - i yr

1

(9.1 ) と (9.１ｐ) を両辺に代入すれば

 xr
2+ yr

2

2xr
2

 =  xr + i yr

1 2 

+  xr - i yr

1 2

 + 2
xr

2+ yr
2

1

これより

 xr + i yr

1 2 

+  xr - i yr

1 2

 = 
 xr

2+ yr
2 2

 2xr
2

 -  2
 xr

2+ yr
2 1

 2xr
0

(9.2)
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３乗和 

 xr + i yr

1
+

xr - i yr

1 3

 =  xr + i yr

1 3 

+  xr - i yr

1 3

 + 3 xr + i yr

1 2 

xr - i yr

1
 + 3

xr + i yr

1
 xr - i yr

1 2 

=  xr + i yr

1 3 

+  xr - i yr

1 3 

+ 3
xr + i yr

1
xr - i yr

1
 xr + i yr

1
+

xr - i yr

1

(9.1 ) と (9.１ｐ) を両辺に代入すれば

 xr
2+ yr

2

2xr
3

=  xr + i yr

1 3 

+  xr - i yr

1 3

 + 3
xr

2+ yr
2

1

 xr
2+ yr

2

2xr

これより

 xr + i yr

1 3 

+  xr - i yr

1 3

 = 
 xr

2+ yr
2 3

 2xr
3

 - 3
 xr

2+ yr
2 2

 2xr
1

(9.3)

４～６乗和

　同様にして、

 xr + i yr

1 4 

+  xr - i yr

1 4

 = 
 xr

2+ yr
2 4

 2xr
4

 - 4
 xr

2+ yr
2 3

 2xr
2

  + 2
 xr

2+ yr
2 2

 2xr
0

(9.4)

 xr + i yr

1 5 

+  xr - i yr

1 5

 = 
 xr

2+ yr
2 5

 2xr
5

 - 5
 xr

2+ yr
2 4

 2xr
3

 + 5
 xr

2+ yr
2 3

 2xr
1

(9.5)

 xr + i yr

1 6 

+  xr - i yr

1 6

 =  
 xr

2+ yr
2 6

 2xr
6

- 6
 xr

2+ yr
2 5

 2xr
4

+ 9
 xr

2+ yr
2 4

 2xr
2

- 2
 xr

2+ yr
2 3

 2xr
0

(9.6)

　これら右辺の係数の絶対値は

1,1,2,1,3,1,4,2,1,5,5,1,6,9,2, 

この数列を「オンライン整数列大辞典」（OEIS）で検索するとA034807 が見つかった。

これらは Lucas  多項式の係数であり、次式で与えられる。

T s, t  = C s -t, t  + C s -t -1, t -1

よって、 s 乗和は床関数 x を用いて次のように表される。

 xr + i yr

1 s 

+  xr - i yr

1 s

 = Σ
t=0

 s/2

( )-1 t  
s -t

t
+ 

s -t -1

t -1  xr
2+ yr

2 s-t

 2xr
s-2t

(9.s)

Q.E.D.

　前節の 補題 ９・１・１ と この 補題 ９・２・１ を用いて、次の定理を得る。

定理 ９・２・２

　完備化されたディリクレベータ関数 z の零点を xr i yr   r =1,2,3, とするとき、

李係数 n   n =1,2,3,  は次式で表される、

n = Σ
r=1



 Σ
s=1

n

( )-1 s-1 
n

s
 Σ

t=0

 s/2

( )-1 t  
s -t

t
+ 

s -t -1

t-1  xr
2+ yr

2 s-t

 2xr
s-2t

(2.2)
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証明

　補題 ９・１・１ より

n = nΣ
r1=1



r1

1
 + Σ

k=2

n

( )-1 k-1 
n

k
Σ
r1=1



r1

k

1
 = Σ

k=1

n

( )-1 k-1 
n

k
Σ
r1=1



r1

k

1

k を s に r1 を k にそれぞれ置換すれば

n = Σ
s=1

n

( )-1 s-1 
n

s
Σ
k=1



k
s

1
(1.1n)

ここで、

1 = x1- i y1  ,  2 = x1+ i y1  ,  3 = x2- i y2  ,  4 = x2+ i y2  ,  5 = x3- i y3  ,  6 = x3+ i y3  , 

と置換すれば、(1.1n) は

n = Σ
s=1

n

( )-1 s-1 
n

s
Σ
k=1



k
s

1

    = Σ
s=1

n

( )-1 s-1 
n

s
Σ
r=1



  xr - i yr

1 s 

+  xr + i yr

1 s

他方、補題 ９・２・１ は

 xr - i yr

1 s 

+  xr + i yr

1 s

 = Σ
t=0

 s/2

( )-1 t  
s -t

t
+ 

s -t -1

t -1  xr
2+ yr

2 s-t

 2xr
s-2t

(9.s)

これを上に代入すれば

n = Σ
s=1

n

( )-1 s-1 
n

s
Σ
r=1



 Σ
t=0

 s/2

( )-1 t  
s -t

t
+ 

s -t -1

t -1  xr
2+ yr

2 s-t

 2xr
s-2t

i.e.

n = Σ
r=1



 Σ
s=1

n

( )-1 s-1 
n

s
 Σ

t=0

 s/2

( )-1 t  
s -t

t
+ 

s -t -1

t-1  xr
2+ yr

2 s-t

 2xr
s-2t

(2.2)

Q.E.D.

　(2.2) の最初の幾つかを展開すると次のようになる。

1 = 
x1

2 + y1
2

2x1
+

x2
2 + y2

2

2x2
+

x3
2 + y3

2

2x3
+

2 = -
 x1

2 + y1
2 2

 2x1
2

+
x1

2 + y1
2

2 2x1
0

+
x1

2 + y1
2

2 2x1
1

- 
 x2

2 + y2
2 2

 2x2
2

+
x2

2 + y2
2

2 2x2
0

+
x2

2 + y2
2

2 2x2
1

- 
 x3

2 + y3
2 2

 2x3
2

+
x3

2 + y3
2

2 2x3
0

+
x3

2 + y3
2

2 2x3
1

　  

3 =  
 x1

2 + y1
2 3

 2x1
3

-
 x1

2 + y1
2 2

3 2x1
1

-
 x1

2 + y1
2 2

3 2x1
2

+
x1

2 + y1
2

6 2x1
0

+
x1

2 + y1
2

3 2x1
1

+
 x2

2 + y2
2 3

 2x2
3

-
 x2

2 + y2
2 2

3 2x2
1

-
 x2

2 + y2
2 2

3 2x2
2

+
x2

2 + y2
2

6 2x2
0

+
x2

2 + y2
2

3 2x2
1
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+
 x3

2 + y3
2 3

 2x3
3

-
 x3

2 + y3
2 2

3 2x3
1

-
 x3

2 + y3
2 2

3 2x3
2

+
x3

2 + y3
2

6 2x3
0

+
x3

2 + y3
2

3 2x3
1



4 = -
 x1

2 + y1
2 4

 2x1
4

+
 x1

2 + y1
2 3

4 2x1
2

+
 x1

2 + y1
2 3

4 2x1
3

-
 x1

2 + y1
2 2

2 2x1
0

-
 x1

2 + y1
2 2

12 2x1
1

-
 x1

2 + y1
2 2

6 2x1
2

+
x1

2 + y1
2

12 2x1
0

+
x1

2 + y1
2

4 2x1
1

  -
 x2

2 + y2
2 4

 2x2
4

+
 x2

2 + y2
2 3

4 2x2
2

+
 x2

2 + y2
2 3

4 2x2
3

-
 x2

2 + y2
2 2

2 2x2
0

-
 x2

2 + y2
2 2

12 2x2
1

-
 x2

2 + y2
2 2

6 2x2
2

 +
x2

2 + y2
2

12 2x2
0

+
x2

2 + y2
2

4 2x2
1

  -
 x3

2 + y3
2 4

 2x3
4

+
 x3

2 + y3
2 3

4 2x3
2

+
 x3

2 + y3
2 3

4 2x3
3

-
 x3

2 + y3
2 2

2 2x3
0

-
 x3

2 + y3
2 2

12 2x3
1

-
 x3

2 + y3
2 2

6 2x3
2

 +
x3

2 + y3
2

12 2x3
0

+
x3

2 + y3
2

4 2x3
1



- 12 -



９・３ 臨界線上の李係数

　本節では前節の特殊ケースとして、李係数 n を臨界線上の零点 1/2 i yr により表示する。

補題 ９・３・１

　完備化されたディリクレベータ関数 z の零点を 1/2 i yr   r =1,2,3, とするとき、

李係数 n   n =1,2,3,  は次式で表される、

n = ( )-1 n-1Σ
r=1



Σ
t=0

n -1

( )-1 t  
2n -t

t
+ 

2n -t -1

t -1  1/4 + yr
2 n-t

1
(3.1)

証明

　定理 ９・２・２ の展開例 において xr = 1/2    r =1,2,3, と置けば 1 , 2 , 3  ,4  は次のようになる。

1 = 
1/4+ y1

2

1
+

1/4+ y2
2

1
+

1/4+ y3
2

1
+

2 = -
 1/4+ y1

2 2

1
+

1/4+ y1
2

4

- 
 1/4+ y2

2 2

1
+

1/4+ y2
2

4

- 
 1/4+ y3

2 2

1
+

1/4+ y3
2

4

　 

3 =  
 1/4+ y1

2 3

1
-
 1/4+ y1

2 2

6
+

1/4+ y1
2

9

+
 1/4+ y2

2 3

1
-
 1/4+ y2

2 2

6
+

1/4+ y2
2

9

+
 1/4+ y3

2 3

1
-
 1/4+ y3

2 2

6
+

1/4+ y3
2

9



4 = -
 1/4+ y1

2 4

1
+
 1/4+ y1

2 3

8
-
 1/4+ y1

2 2

20
+

1/4+ y1
2

16

  -
 1/4+ y2

2 4

1
+
 1/4+ y2

2 3

8
-
 1/4+ y2

2 2

20
+

1/4+ y2
2

16

  -
 1/4+ y3

2 4

1
+
 1/4+ y3

2 3

8
-
 1/4+ y3

2 2

20
+

1/4+ y3
2

16



　これらの右辺の係数の絶対値は Lucas 多項式の係数 A061896 の一部（赤字）である。

1,1,2,1,3,1,4,2,1,5,5,1,6,9,2,1,4,7,14,7,1,8,20,16,2,

赤字のみの数列は次式によって得られる。

T 2n, t  = C 2n -t, t  + C 2n -t -1, t -1 t =0,1,,n -1

そこで、 n の第 r 行を n yr とすれば、
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2 yr  = -
 1/4+ yr

2 2

1
+

1/4+ yr
2

4

     = ( )-1 2-1Σ
t=0

2-1

( )-1 t  
4-t

t
+ 

4-t -1

t-1  1/4 + yr
2 2-t

1

3 yr  =  
 1/4+ yr

2 3

1
-
 1/4+ yr

2 2

6
+

1/4+ yr
2

9

     = ( )-1 3-1Σ
t=0

3-1

( )-1 t  
6-t

t
+ 

6-t -1

t-1  1/4 + yr
2 3-t

1


以下、帰納法により、

n yr  = ( )-1 n-1Σ
t=0

n -1

( )-1 t  
2n -t

t
+ 

2n -t -1

t -1  1/4 + yr
2 n-t

1
(3. )

これより

n = ( )-1 n-1Σ
r=1



Σ
t=0

n -1

( )-1 t  
2n -t

t
+ 

2n -t -1

t -1  1/4 + yr
2 n-t

1
(3.1)

Q.E.D.

ｃｆ.

 これは前節の一般式

n = Σ
r=1



 Σ
s=1

n

( )-1 s-1 
n

s
 Σ

t=0

 s/2

( )-1 t  
s -t

t
+ 

s -t -1

t-1  xr
2+ yr

2 s-t

 2xr
s-2t

(2.2)

よりも著しく簡素になっている。これは 2xr = 1  r=1,2,3,により多項式の分子が整数となり、分母毎に纏め

られたためである。

李係数を構成する多項式

　そもそも李係数 n はその符号を判定するためにある。そのためには n の各行

n yr  = ( )-1 n-1Σ
t=0

n -1

( )-1 t  
2n -t

t
+ 

2n -t -1

t -1  1/4 + yr
2 n-t

1
(9. )

の符号を調べることから始めるべきであろう。

　ここで任意の実数 yr に対して 1/4 + yr
2 n 

> 0  であるから、 n yr からこれを除いた多項式を

gn yr  = ( )-1 n-1Σ
t=0

n -1

( )-1 t  
2n -t

t
+ 

2n -t -1

t -1
 1/4 + yr

2 t
(9.g)

とせよ。すると、 n yr の代わりに gn yr の符号を調べればよいことになる。

補題 ９・３・２

　 n を自然数、 yr を実数、そして gn yr を次のような多項式とする。

gn yr  = ( )-1 n-1Σ
t=0

n -1

( )-1 t  
2n -t

t
+ 

2n -t -1

t -1
 1/4 + yr

2 t
(9.g)

すると gn yr は n が奇数か偶数かによってそれぞれ次のように変形される。

g2n-1 y  =
42n-2

1  Σ
s=0

n -1

 ( )-1 s 4s  
2n -1

2s
yr

2s
2

n =1,2,3, (9.go)
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g2n y  = 
42n-2

yr
2

 Σ
s=0

n-1

 ( )-1 s 4s  
2n

2s +1
yr

2s
2

n =1,2,3, (9.ge)

証明

(1) n が奇数のとき、

　 gn yr は次のように簡約されて変形される。

g1 yr  = 1   = 
40

1

g3 yr  = 
16
1
 1-12yr

2 2
  = 

42

1
 1-12yr

2 2

g5 yr  = 
256

1
 1-40yr

2 +80yr
4 2

  = 
44

1
 1-40yr

2 +80yr
4 2

g7 yr  = 
4096

1
 1-84yr

2 +560yr
4 -448yr

6 2
 = 

46

1
 1-84yr

2 +560yr
4 -448yr

6 2

 　 
1,84,560,448 を OEIS中で検索すると A085840 が見つかった。そしてこれらは次式で与えられる。

T n ,s  = 
 2n -2s +1 ! 2s !

4s 2n +1 !
s =0,1,2,  ,n

右辺において n を n -1 に置換すると

T n ,s  = 
 2n -2s -1 ! 2s !

4s 2n -1 !
s =0,1,2,  ,n -1

これを用いれば

g2n-1 yr  =
42n-2

1  Σ
s=0

n -1

 ( )-1 s

 2n -2s -1 ! 2s !
4s  2n -1 !

yr
2s

2

i.e.

g2n-1 yr  =
42n-2

1  Σ
s=0

n -1

 ( )-1 s 4s  
2n -1

2s
yr

2s
2

n =1,2,3, (9.go)

(2) n が偶数のとき、

　 gn y は次のように簡約されて変形される。

g2 yr  = 4yr
2   = 

40

yr
2

 2yr
0 2

g4 yr   = yr
2 1-4yr

2 2
  = 

42

yr
2

 4-16yr
2 2

g6 yr  = 
64

yr
2

 3-40yr
2 +48yr

4 2
  = 

44

yr
2

 6-80yr
2 +96yr

4 2

g8 yr  = 
64

yr
2

 1-28yr
2 +112yr

4 -62yr
6 2

 = 
46

yr
2

 8-224yr
2 +896yr

4 -512yr
6 2

      　 

8,224,896,512 を OEIS中で検索すると、この数列を含む整数列 A229032 が見つかった。

そしてこれらは次式で与えられる。
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T n ,s  = 4s 
n +1

2s +1
s =0,1,2,  ,n

不要な数列をスキップするため、右辺において n を 2n -1 に置換すると

T n ,s  = 4s 
2n

2s +1
s =0,1,2,  ,n

これを用いれば

g2n yr  = 
42n-2

yr
2

 Σ
s=0

n -1

 ( )-1 s 4s  
2n

2s +1
yr

2s
2

n =1,2,3, (9.ge)

Q.E.D.

Note

　つまり、 gn yr は全て完全平方式に帰着する。 これは予想外の驚くべき結果である。

臨界線上の李係数

　この補題 ９・３・２ を用いれば、臨界線上の李係数は次のように表される。

定理 ９・３・３

　完備化されたディリクレベータ関数 z の零点を 1/2 i yr   r =1,2,3, とするとき、

李係数 n   n =1,2,3,  は次のように実数の平方和で表される。

2n-1 = Σ
r=1



42n-2  1/4 + yr
2 ( )2n-1 /2 2

1  Σ
s=0

n -1

 ( )-1 s 4s  
2n -1

2s
y 2s

r

2

   n =1,2,3, (3.3o)

2n  = Σ
r=1



42n-2 1/4 + yr
2 2n

yr
2

 Σ
s=0

n -1

 ( )-1 s 4s  
2n

2s +1
y 2s

r

2

   n =1,2,3, (3.3e)

証明

　(3.1) ,  (9. ) 及び (9.g) より

n  = Σ
r=1


n yr  = Σ

r=1



 1/4 + yr
2 n

gn yr

これに 補題 ９・３・２ の gn yr を 奇数・偶数別に代入すれば、

2n-1 = Σ
r=1



42n-2 1/4 + yr
2 2n-1

1  Σ
s=0

n -1

 ( )-1 s 4s  
2n -1

2s
y 2s

r

2

  = Σ
r=1



42n-2  1/4 + yr
2 ( )2n-1 /2 2

1  Σ
s=0

n -1

 ( )-1 s 4s  
2n -1

2s
y 2s

r

2

2n  = Σ
r=1



42n-2 1/4 + yr
2 2n

yr
2

 Σ
s=0

n -1

 ( )-1 s 4s  
2n

2s +1
y 2s

r

2

Q.E.D.

Note

　当然に n  0    n =1,2,3,,  である。つまり、臨界線上の李係数は李の基準を満たす。
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計算例

　ディリクレベータ関数の実部が 1/2 である零点を生成する一般式は知られていないが、最初の 10000 個

が Tomás Oliveira e Silva ( http://sweet.ua.pt/tos/zeta.html  ( 004-001) ) によって提供されている。 そこで

これを用いて (3.3o) , (3.3e) により 1  4 を計算すると、次のようになる。。

 

 

　これらを 第１節の計算結果 と比べると、それぞれ有効 2 桁まで一致していることが分る。

2026.02.09

河野 和

広島市

宇宙人の数学
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