
ディリクレベータ関数のリーマン予想の李係数による証明

要 旨

(1) 完備化されたディリクレベータ関数 z の李係数は臨界領域の左端において定義できる。そしてこれは

 z とそのアダマール積の両方から導出可能である。これらをそれぞれoλn , oμn とすれば、oλn = oμn 

でなければならない。

(2) 李係数は臨界領域の右端においても定義できる。そしてこれも z とそのアダマール積の両方から導出

可能である。これらをそれぞれιλn , ιμn とすれば、ιλn = ιμn でなければならない。

(3)  z から得られる李係数は、関数等式と定義式により、oλn = ιλn となる。他方、アダマール積から得られる

李係数 oμn ,1μn は共役零点 xr i yr   r =1,2,3,で表示できるが、それによると一般に oμn  ιμn である。

(4) oμn = ιμn となるための必要十分条件は  z の零点が臨界線 x =1/2 上にあることである。この場合に

のみ、 oλn = oμn = ιμn = ιλn が完結する。そして これらの李係数は李の基準を満たす。かくして、ディリクレ

ベータ関数  z についてのリーマン予想は定理として成立する。

序 説

１. 本稿で扱う関数

本稿ではディリクレベータ関数  z 及び完備化されたディリクレベータ関数 z を扱う。それらはそれぞれ

次式で定義される。
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なお、これらの零点は臨界領域 0 < Re z  < 1 においては同値であることが知られている。

２.  z や z の零点の記法

 z や z の零点  は 本稿では次のように記述する。

(1) 複素数表記
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１ 臨界領域左端での李係数

　本章における李係数は臨界領域左端 z =0 で定義されるものである。

１・１ ω関数からの李係数 oλn

　本節における李係数は、完備化されたディリクレベータ関数 z から得られるものである。

定理 １・１

　李係数 0n は次の２式で定義されるとする。

0n = 
 n -1 !
( )-1 n

 dz n

d n

 1-z n-1 log  z
z=0

(1.1d)

 z  =  
2 1+z

 2
1+z

 z (0. )

すると、 0n は次で表される。

　 0n = 
 n -1 !

1
Σ
s=1

n

 
n

s
 s n-s ( )-1 s Σ

t=1

s

( )-1 t-1 t -1 !
 z t

Bs,t  ( )1 , ( )2 ,  ,( )s

z=0

(1. )

但し、 a k はポッホハマー記号、 Bn,k f1 , f2 , は Bell 多項式である。

証明

(1)  1-z n-1 の高階導関数

dz 1

d 1

 1-z n-1 = - n -1  1-z n-2

dz 2

d 2

 1-z n-1 =    n -2  n -1  1-z n-3

dz 3

d 3

 1-z n-1 = - n -3  n -2  n -1  1-z n-4

    

dz s

d s

 1-z n-1 = ( )-1 s  n -s    n -2  n -1  1-z n-1-s

ポッホハマー記号

 a k = a a +1  a +k -1

を用いると

 n -s k =  n -s  n -s +1  n -s +k -1

これより

 n -s s =  n -s  n -s +1  n -1  =  n -s    n -2  n -1

よって

dz s

d s

 1-z n-1 = ( )-1 s  n -s s  1-z n-1-s

s を n -s に置換すれば

dz n-s

d n-s

 1-z n-1 = ( )-1 n-s  s n-s  1-z s-1 (1.1)
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(2) log  z の高階導関数

　拙著 「 22 合成関数の高階微分 」 ２２・２・３ によれば、Bs,t  f1 , f2 , を Bell 多項式とするとき

 log f x ( )n  = Σ
r=1

n

( )-1 r-1 r -1 !Bn,r f1 , f2 , , fn f  -r n  1

よって
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t=1

s

( )-1 t-1 t -1 !
 z t

Bs,t  ( )1 , ( )2 ,  ,( )s

s  1 (1.2 )

(3)  1-z n-1 log  z の高階導関数

　ライプニッツ則は

 f z g z ( )n  = Σ
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n

 
n

s
f ( )n-s
 z g( )s

 z

これに (1.1) と (1.2 ) を代入すればすれば、 n,s 1 であるから

dz n
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s
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s
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 z t

Bs,t  ( )1 , ( )2 ,  ,( )s

(1.3 )

(4) 李係数 0n

　(1.3 ) を (1.1d) に代入して

　 0n = 
 n -1 !
( )-1 n

Σs=1

n
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z=0

i.e.

　 0n = 
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　 (1. )

Q.E.D.

　最初の幾つかを書き下すと

01 = 
0!

( )-1 1

 lim
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 z



　また、数式処理ソフト Mathematica を用いてこれらを計算すfると次のようになる。
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これらのうち、 1 はディリクレベータ関数の臨界線上の零点の逆数の和に等しい。（ OEIS  A360807 ）

１・２ アダマール積からの李係数 oμn

　本節における李係数は、アダマール積から得られるものである。

定理 １・２

　李係数 0n は次の２式で定義されるとする。

0n = 
 n -1 !
( )-1 n

 dz n

d n

 1-z n-1 log  z
z=0

(1.2d)

 z  = Π
k=1



 1-
k

z
where,  k    k =1,2,3,  are zeros of  z (0. )

すると、 0n は次で表される。

0n = Σ
k=1



 1- 1-
k

1 n

(1.)

証明

(1)  1-z n-1 の高階導関数

　これは １・１ (1) と同じである。即ち、

dz n-s

d n-s

 1-z n-1 = ( )-1 n-s  s n-s  1-z s-1 (1.1)

(2) log  z の高階導関数

　(0. ) の両辺の対数を取ると

log  z  = log Π
k=1



 1-
k

z
 = Σ

k=1


log 1-

k

z
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両辺を z で微分すると

dz
d

log  z  = 
dz
d
Σ
k=1


log 1-

k

z
 = Σ

k=1



1-z/k

-1/k

i.e.

dz 1

d 1

log  z  = -Σ
k=1



k -z

1

dz 2

d 2

log  z  = -Σ
k=1



 k -z 2

1

dz 3

d 3

log  z  = -Σ
k=1



 k -z 3

2

   

dz s

d s

log  z  = -Σ
k=1



 k -z s

 s -1 !
(1.2 )

(3)  1-z n-1 log  z の高階微係数 ( z =0 )

　(1.1) と (1.2 ) にライプニッツ則を適用すれば

dz n

d n

 1-z n-1 log  z  = -Σ
s=0

n

 
n

s
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( )0-1 ! は不可能なので、最初のΣの添字の初期値を 0 から 1 に変更し

dz n
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更に

 s n-s  = s s +1  n -1  = 
 s -1 !
 n -1 !

であるから

dz n

d n

 1-z n-1 log  z  = -Σ
s=1
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 
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s
( )-1 n-s 

 s -1 !
 n -1 !

 1-z s-1Σ
k=1



 k -z s

 s -1 !

i.e.

dz n

d n

 1-z n-1 log  z  = -( )-1 n  n -1 !Σ
k=1



Σ
s=1

n

 
n

s
 1-z s-1

 k -z s

( )-1 s 

　臨界領域左端 z =0 における微係数は

 dz n

d n

 1-z n-1 log  z
z=0

 = -( )-1 n  n -1 !Σ
k=1



Σ
s=1

n

 
n

s k
 s

( )-1 s 

 = -( )-1 n  n -1 !Σ
k=1



 Σ
s=0

n

 
n

s k
 s

( )-1 s 

- 1

 = - ( )-1 -n  n -1 !Σ
k=1



  1 - 
k

1 n 

- 1

i.e

 dz n

d n

 1-z n-1 log  z
z=0

 = ( )-1 -n  n -1 !Σ
k=1



 1- 1-
k

1 n

(1.3 )
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(4) 李係数 0n

　(1.3 ) を (1.2d) に代入して

0n = Σ
k=1



 1- 1-
k

1 n

(1.)

Q.E.D.

１・３  oλ1 と  oμ1

　李係数 0n  , 0n において特に n =1 のときは次の補題が成り立つ。

補題 １・３

　 k   k =1,2,3,  は  z の零点とし、 2r-1 = xr- i yr , 2r = xr+ i yr   r =1,2,3,  とする。

すると、次が成立する。

Σ
r=1



 xr- i yr

1
+

xr+ i yr

1
 = 

0!
( )-1 1

 lim
z0

 
 z
 '  z

 = 0.0777839

証明

　定理 １・２ において 特に n =1 のときは、

01 = Σ
k=1



 1- 1-
k

1 1

 = Σ
k=1



k

1

2r-1 = xr- i yr , 2r = xr+ i yr   r =1,2,3,  と置けば、

01 = Σ
r=1



 xr- i yr

1
+

xr+ i yr

1

他方、定理 １・１ において 特に n =1 のときは、

01 = 
0!

( )-1 1

 lim
z0

 
 z
 '  z

01 = 01  であるから、

Σ
r=1



 xr- i yr

1
+

xr+ i yr

1
 = 

0!
( )-1 1

 lim
z0

 
 z
 '  z

 = 0.0777839

Q.E.D.

Note

　 z  = 1+A1z 1+A2z 2+A3z 4 +  と展開したとき、拙著 「 08 完備化されたディリクレベータのベキ級数 」

定理 ８・２・１ により次が成立する。これはヴィエタの公式である。

Σ
k=1



k

1
 = -A1

　　 = - 
1   log2 +

2
log

 0 4
1

-0 4
3

+ 1 4
1

-1 4
3

-
2

0( )1
 0 4

1
-0 4

3

    = -( )-0.0777839
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２ 臨界領域右端での李係数

本章における李係数は臨界領域右端 z =1 で定義されるものである。

２・１ ω関数からの李係数 ιλn

本節における李係数は、完備化されたディリクレベータ関数 z から得られるものである。

定理 ２・１

李係数 1n は次の２式で定義されるとする。

1n = 
 n -1 !

1  dz n

d n

z n-1 log  z
z=1

(2.1d)

 z  =  
2 1+z

 2
1+z

 z (0. )

すると、 1n は次で表される。

1n = 
 n -1 !

1
Σ
s=1

n

 
n

s
 s n-s Σ

t=1

s

( )-1 t-1 t-1 !
 z t

Bs,t  ( )1 , ( )2 ,  ,( )s

z=1

(2. )

但し、 a k はポッホハマー記号、 Bn,k f1 , f2 , は Bell 多項式である。

証明

(1) z n-1
の高階導関数

dz s

d s

z n-1 =   n -s    n -2  n -1 z n-1-s

ポッホハマー記号 a k を用いると

dz s

d s

z n-1 =  n -s s z
n-1-s

s を n -s に置換すれば

dz n-s

d n-s

z n-1 =  s n-s z
s-1

(2.1)

(2) log   z の高階導関数

１・１・(2) と同様で、

dz s

d s

log  z  = Σ
t=1

s

( )-1 t-1 t -1 !
 z t

Bs,t  ( )1 , ( )2 ,  ,( )s

s  1 (1.2 )

(3) z n-1 log   z の高階導関数

ライプニッツ則は

 f z g z ( )n  = Σ
s=0

n

 
n

s
f ( )n-s
 z g( )s

 z

これに (2.1) と (1.2 ) を代入すればすれば、 n,s 1 であるから

dz n

d n

z n-1 log  z  = Σ
s=1

n

 
n

s
 s n-s z

s-1
Σ
t=1

s

( )-1 t-1 t-1 !
 z t

Bs,t  ( )1 , ( )2 ,  ,( )s

(2.3 )
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(4) 李係数 1n

　(2.3 ) を (2.1d) に代入して

1n = 
 n -1 !

1  Σ
s=1

n

 
n

s
 s n-s z

s-1
Σ
t=1

s

( )-1 t-1 t -1 !
 z t

Bs,t  ( )1 , ( )2 ,  ,( )s

z=1

i.e.

1n = 
 n -1 !

1
Σ
s=1

n

 
n

s
 s n-s Σ

t=1

s

( )-1 t-1 t -1 !
 z t

Bs,t  ( )1 , ( )2 ,  ,( )s

z=1

(2.)

Q.E.D.

最初の幾つかを書き下すと

11 = 
0!
1

 lim
z1

 
 z
 '  z

12 = 
1!
1

 lim
z1  z

2 '  z
 - 

 z 2

z '  z 2

 + 
 z

z"  z

13 = 
2!
1

 lim
z1  z

6 '  z
 - 

 z 2

6z '  z 2

 + 
 z 3

2z 2 '  z 3

 + 
 z

6z"  z
 - 

 z 2

3z 2 '  z "  z
 + 

 z
z 2(3)

 z



　また、数式処理ソフト Mathematica を用いてこの 3 つの例を計算すfると、１・１ (4) の結果と完全に一致する。

２・２ アダマール積からの李係数 ιμn

　本節における李係数は、アダマール積から得られるものである。

定理 ２・２

　李係数 1n は次の２式で定義されるとする。

1n = 
 n -1 !

1  dz n

d n

z n-1 log  z
z=1

(2.2d)

 z  = Π
k=1



 1-
k

z
where,  k    k =1,2,3,  are zeros of  z (0. )

すると、 1n は次で表される。

1n = Σ
k=1



 1- 1-
k

1 -n

(2.)

証明

(1) z n-1
の高階導関数

　これは ２・１ (1) と同じである。即ち、

dz n-s

d n-s

z n-1 =  s n-s z
s-1

(2.1)
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(2) log  z の高階導関数

　これは １・２ (2) と同じである。即ち、

dz s

d s

log  z  = -Σ
k=1



 k -z s

 s -1 !

但し、本節では k -z を z-k  に変更した次式を用いる。

dz s

d s

log  z  = Σ
k=1


( )-1 s-1

 z -k
s

 s -1 !
(2.2 )

(3) z n-1 log  z の高階微係数 ( z =1 )

　(2.1) と (2.2 ) にライプニッツ則を適用すれば

dz n

d n

z n-1 log  z  = Σ
s=0

n

 
n

s
 s n-s z

s-1Σ
k=1



( )-1 s-1

 z -k
s

 s -1 !

( )0-1 ! は不可能なので、最初のΣの添字の初期値を 0 から 1 に変更し

dz n

d n

z n-1 log  z  = Σ
s=1

n

 
n

s
 s n-s z

s-1Σ
k=1


( )-1 s-1

 z -k
s

 s -1 !

更に

 s n-s  = s s +1  n -1  = 
 s -1 !
 n -1 !

であるから

dz n

d n

z n-1 log  z  = - n -1 !Σ
k=1



Σ
s=1

n

 
n

s
z s-1

 z -k
s

( )-1 s

　臨界領域右端 z =1 における微係数は

 dz n

d n

z n-1 log  z
z=1

 = - n -1 !Σ
k=1



Σ
s=1

n

 
n

s  1-k
s

( )-1 s

= - n -1 !Σ
k=1



 Σ
s=0

n

 
n

s  1-k
s

( )-1 s

- 1

= - n -1 !Σ
k=1



  1-
1-k

1 n 

-1

i.e.

 dz n

d n

z n-1 log  z
z=1

 =  n -1 !Σ
k=1



 1- 1-
1-k

1 n

(2.3 )

(4) 李係数 1n

　(2.3 ) を (2.2d) に代入して

1n = Σ
k=1



 1- 1-
1-k

1 n

ここで、複素数 k について

 1-
1-k

1 n

 =  1-k

-k
n

 =  -k

1-k
-n

 =  k

k -1 -n

 =  1-
k

1 -n

が成立するから、 1n は更に次のようになる。

- 8 -



1n = Σ
k=1



 1- 1-
k

1 -n

  = 0-n (2.)

Q.E.D.
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３ 左右の李係数の不等値性

３・１ ω 関数からの李係数 oλn と ιλn

　　定理 １・１ 及び 定理 ２・１ では、臨界領域の左端及び右端での ω 関数からの李係数 0n , 1n  が得られ

た。本節での問題は 0n  と 1n  が等しいか否かである。 結論から言うと、これらは等しい。以下、これを定理

として示す。

定理 ３・１

　臨界領域両端の李係数 0n , 1n  がそれぞれ次のようであるとする。

0n = 
 n-1 !

1
Σ
s=1

n

 
n

s
 s n-s ( )-1 s Σ

t=1

s

( )-1 t-1 t-1 !
 z t

Bs,t  ( )1 , ( )2 ,  ,( )s

z=0

(1.)

1n = 
 n-1 !

1
Σ
s=1

n

 
n

s
 s n-s Σ

t=1

s

( )-1 t-1 t-1 !
 z t

Bs,t  ( )1 , ( )2 ,  ,( )s

z=1

(2.)

但し、

 z  =  
2 1+z

 2
1+z

 z (0. )

　すると、次式が成立する。

0n = 1n n=1,2,3, (3.1)

証明

　(1.) と (2.) はそれぞれ次のように書き換えできる。

0n = 
 n-1 !

1
Σ
s=1

n

 
n

s
 s n-s ( )-1 s dz s

d s

log  z
z=0

1n = 
 n-1 !

1
Σ
s=1

n

 
n

s
 s n-s  dz s

d s

log  z
z=1

関数等式 z =  1-z により、 z は z=1/2に関して線対称である。従って log z  もまた z=1/2に

関して線対称である。そして log の高階導関数は次のようになる。

奇数階導関数：　 z=1/2に関して点対称（例：左図）。

偶数階導関数：　 z=1/2に関して線対称（例：右図）。

 

よって s=0および s=1での log z の高階微係数（赤点）について次式が成立する。

( )-1 s dz s

d s

log  z
s=0

 =  dz s

d s

log  z
s=1

for s=1,2,3,

かくして 0n = 1n  となる。　つまり、これは関数等式と定義式により無条件に成立する。 Q.E.D.
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３・２ アダマール積からの李係数 oμn と ιμn

　　定理 １・２ 及び 定理 ２・２ では、臨界領域の左端及び右端でのアダマール積からの李係数 0n , 1n  が

得られた。本節での問題は 0n  と 1n  が等しいか否かである。

補題 ３・２・１

　 k   k=1,2,3,  は ω関数の零点とし、 2r-1 = xr- i yr , 2r = xr+ i yr   r=1,2,3,  とする。

すると、次が成立する。

(1) 奇数次

　Σ
k=1



 1-
k

1 2n-1

= Σ
r=1



 xr
2 + yr

2 2n-1

2
Σ
s=0

n-1

( )-1 n-s-1 
2n-1

2 n-s-1
 xr

2 + yr
2 - xr

2s+1
yr
2n-2s-2

　Σ
k=1



 1-
k

1 -( )2n-1

= Σ
r=1



  1-xr
2 + yr

2 2n-1

2
Σ
s=0

n-1

( )-1 n-s-1 
2n-1

2 n-s-1
 xr

2 + yr
2 - xr

2s+1
yr
2n-2s-2

(2) 偶数次

　Σ
k=1



 1-
k

1 2n

 = Σ
r=1



 xr
2 + yr

2 2n

2
Σ
s=0

n

( )-1 n-s 
2n

2 n-s
 xr

2 + yr
2 - xr

2s 
yr
2n-2s

　Σ
k=1



 1-
k

1 -2n

=  Σ
r=1



  1-xr
2 + yr

2 2n

2
Σ
s=0

n

( )-1 n-s 
2n

2 n-s
 xr

2 + yr
2 - xr

2s 
yr
2n-2s

証明

　 k の虚部には が存在するから、 k を仮定のように割り当てる。すると、

 1-
2r-1 

1
 +  1-

2r 

1
 =  1-

xr- i yr

1
 +  1-

xr+ i yr

1

 1-
2r-1 

1 -1

+  1-
2r 

1 -1

=  1-
xr- i yr

1 -1

+ 1-
xr+ i yr

1 -1

右辺の分母を実数化すれば

 1-
2r-1 

1
 +  1-

2r 

1
 =  xr

2 + yr
2

xr
2 + yr

2 - xr
 - i 

xr
2 + yr

2

yr
 +  xr

2 + yr
2

xr
2 + yr

2 - xr
 + i 

xr
2 + yr

2

yr

 1-
2r-1 

1 -1

+  1-
2r 

1 -1

=    1-xr
2 + yr

2

xr
2 + yr

2 - xr
 - i 
 1-xr

2 + yr
2

yr

    +    1-xr
2 + yr

2

xr
2 + yr

2 - xr
 + i 
 1-xr

2 + yr
2

yr

これらは煩雑なので、次のように略記する。

xr
2 + yr

2

xr
2 + yr

2 - xr
 = Ar ,

xr
2 + yr

2

yr
 = Br ,

 1-xr
2 + yr

2

xr
2 + yr

2 - xr
 = Cr ,

 1-xr
2 + yr

2

yr
 = Dr

すると、

n=1のとき

 1-
2r-1 

1
 +  1-

2r 

1
 =  Ar - i Br  +  Ar + i Br  = 2Ar

 1-
2r-1 

1 -1

+  1-
2r 

1 -1

=   Cr - i Dr  +  Cr + i Dr  = 2Cr

n=2のとき
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 1-
2r-1 

1 2

 +  1-
2r 

1 2

 =  Ar - i Br
2 +  Ar + i Br

2 = 2 Ar
2 - Br

2

 1-
2r-1 

1 -2

+  1-
2r 

1 -2

=   Cr - i Dr
2 +  Cr + i Dr

2 = 2 Cr
2 - Dr

2

n=3のとき

 1-
2r-1 

1 3

 +  1-
2r 

1 3

 =  Ar - i Br
3 +  Ar + i Br

3 = 2 Ar
3 - 3ArBr

2

 1-
2r-1 

1 -3

+  1-
2r 

1 -3

=   Cr - i Dr
3 +  Cr + i Dr

3 = 2 Cr
3 - 3CrDr

2

n=4のとき

 1-
2r-1 

1 4

 +  1-
2r 

1 4

 =  Ar - i Br
4 +  Ar + i Br

4 = 2 Ar
4 - 6Ar

2Br
2 + Br

4

 1-
2r-1 

1 -4

+  1-
2r 

1 -4

=   Cr - i Dr
4 +  Cr + i Dr

4 = 2 Cr
4 - 6Cr

2Dr
2 + Dr

4

右辺2 内の係数の絶対値は

1, 1,1, 1,3,  1,6,1,  1,10,5,  1,15,15,1, 

この整数列は OEIS A098158 に一致し、次式で与えられる。

T n ,k  = Binomial(n,2k) ,    for   n  0  &   k=0,1,2,
これを用いて、

奇数次

 1-
2r-1 

1 2n-1

 +  1-
2r 

1 2n-1

     = 2Σ
s=0

n-1

( )-1 n-1-s 
2n-1

2 n-s-1
Ar
2s+1Br

2n-2s-2

 1-
2r-1 

1 -( )2n-1

+  1-
2r 

1 -( )2n-1

=  2Σ
s=0

n-1

( )-1 n-1-s 
2n-1

2 n-s-1
Cr
2s+1Dr

2n-2s-2

偶数次

 1-
2r-1 

1 2n

 +  1-
2r 

1 2n

   = 2Σ
s=0

n

( )-1 n-s 
2n

2 n-s
Ar
2s Br

2n-2s

 1-
2r-1 

1 -2n

+  1-
2r 

1 -2n

 =  2Σ
s=0

n

( )-1 n-s 
2n

2 n-s
Cr
2s Dr

2n-2s

ここで

Σ
k=1



 1-
k

1 n

 = Σ
r=1



  1-
2r-1 

1 n

 +  1-
2r 

1 n

Σ
k=1



 1-
k

1 -n

= Σ
r=1



  1-
2r-1 

1 -n

 +  1-
2r 

1 -n

であるから、記号 Ar , Br , Cr , Dr を元に戻せば、

奇数次

　Σ
k=1



 1-
k

1 2n-1

= 2Σ
r=1



Σ
s=0

n-1

( )-1 n-s-1 
2n-1

2 n-s-1  xr
2 + yr

2

xr
2 + yr

2 - xr
2s+1

 xr
2 + yr

2

yr
2n-2s-2

　Σ
k=1



 1-
k

1 -( )2n-1

=  2Σ
r=1



Σ
s=0

n-1

( )-1 n-s-1 
2n-1

2 n-s-1

   1-xr
2 + yr

2

xr
2 + yr

2 - xr
2s+1

  1-xr
2 + yr

2

yr
2n-2s-2
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i.e.

　Σ
k=1



 1-
k

1 2n-1

= Σ
r=1



 xr
2 + yr

2 2n-1

2
Σ
s=0

n-1

( )-1 n-s-1 
2n-1

2 n-s-1
 xr

2 + yr
2 - xr

2s+1
yr
2n-2s-2

  Σ
k=1



 1-
k

1 -( )2n-1

= Σ
r=1



  1-xr
2 + yr

2 2n-1

2
Σ
s=0

n-1

( )-1 n-s-1 
2n-1

2 n-s-1
 xr

2 + yr
2 - xr

2s+1
yr
2n-2s-2

偶数次

　Σ
k=1



 1-
k

1 2n

 = 2Σ
r=1



Σ
s=0

n

( )-1 n-s 
2n

2 n-s  xr
2 + yr

2

xr
2 + yr

2 - xr
2s 

 xr
2 + yr

2

yr
2n-2s

　Σ
k=1



 1-
k

1 -2n

=  2Σ
r=1



Σ
s=0

n

( )-1 n-s 
2n

2 n-s   1-xr
2 + yr

2

xr
2 + yr

2 - xr
2s 

  1-xr
2 + yr

2

yr
2n-2s

i.e.

　Σ
k=1



 1-
k

1 2n

 = Σ
r=1



 xr
2 + yr

2 2n

2
Σ
s=0

n

( )-1 n-s 
2n

2 n-s
 xr

2 + yr
2 - xr

2s 
yr
2n-2s

　Σ
k=1



 1-
k

1 -2n

=  Σ
r=1



  1-xr
2 + yr

2 2n

2
Σ
s=0

n

( )-1 n-s 
2n

2 n-s
 xr

2 + yr
2 - xr

2s 
yr
2n-2s

Q.E.D.

　この補題を用いれば、　李係数 0n , 1n  はそれぞれ次のように得られる。

定理 ３・２・２

　臨界領域両端の李係数 0n , 1n  がそれぞれ次のようであるとする。

0n = Σ
k=1



 1- 1-
k

1 n

(1.)

1n = Σ
k=1



 1- 1-
k

1 -n

  = 0-n (2.)

但し、

 z  = Π
k=1



 1-
k

z
k    k=1,2,3,  are zeros of  z (0. )

　すると、 2r-1 = xr- i yr , 2r = xr+ i yr   r=1,2,3,  と記述するとき、李係数 0n , 1n はそれぞれ

次のように書き換えられる。

(1) 奇数次

　　 02n-1 = 2Σ
r=1



 1 - 
 xr

2 + yr
2 2n-1

1
Σ
s=0

n-1

( )-1 n-s-1 
2n-1

2 n-s-1
 xr

2 + yr
2 - xr

2s+1
yr
2n-2s-2

　　 12n-1 = 2Σ
r=1



 1 - 
  1-xr

2 + yr
2 2n-1

1
Σ
s=0

n-1

( )-1 n-s-1 
2n-1

2 n-s-1
 xr

2 + yr
2 - xr

2s+1
yr
2n-2s-2

(2) 偶数次

02n = 2Σ
r=1



 1 - 
 xr

2 + yr
2 2n

1
Σ
s=0

n

( )-1 n-s 
2n

2 n-s
 xr

2 + yr
2 - xr

2s 
yr
2n-2s

12n = 2Σ
r=1



 1 - 
  1-xr

2 + yr
2 2n

1
Σ
s=0

n

( )-1 n-s 
2n

2 n-s
 xr

2 + yr
2 - xr

2s 
yr
2n-2s
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証明

　李係数は

0n = Σ
k=1



 1- 1-
k

1 n

, 1n = Σ
k=1



 1- 1-
k

1 -n

であるが、

Σ
k=1



 1-
k

1 n

 = Σ
r=1



  1-
2r-1 

1 n

 +  1-
2r 

1 n

であるから

0n = Σ
k=1



 1- 1-
k

1 n

   = Σ
r=1



 2-  1-
2r-1 

1 n

 -  1-
2r 

1 n

1n = Σ
k=1



 1- 1-
k

1 -n

 = Σ
r=1



 2-  1-
2r-1 

1 -n

 -  1-
2r 

1 -n

ここで 補題 ３・２・１ を用いれば、、

(1) 奇数次

　 02n-1 = 2Σ
r=1



 1 - 
 xr

2 + yr
2 2n-1

1
Σ
s=0

n-1

( )-1 n-s-1 
2n-1

2 n-s-1
 xr

2 + yr
2 - xr

2s+1
yr
2n-2s-2

　 12n-1 =  2Σ
r=1



 1 - 
  1-xr

2 + yr
2 2n-1

1
Σ
s=0

n-1

( )-1 n-s-1 
2n-1

2 n-s-1
 xr

2 + yr
2 - xr

2s+1
yr
2n-2s-2

(2) 偶数次

　 02n = 2Σ
r=1



 1 - 
 xr

2 + yr
2 2n

1
Σ
s=0

n

( )-1 n-s 
2n

2 n-s
 xr

2 + yr
2 - xr

2s 
yr
2n-2s

　 12n =  2Σ
r=1



 1 - 
  1-xr

2 + yr
2 2n

1
Σ
s=0

n

( )-1 n-s 
2n

2 n-s
 xr

2 + yr
2 - xr

2s 
yr
2n-2s

Remark

　１・２ 及び ２・２ で見たように、 z の零点 k   k=1,2,3,  は次式を満たす値である。

0 n = 0n    ,   1 n = 1n     n=1,2,3,

そして 定理 ３・１ より 0n = 1n n=1,2,3,  であるから、 0 n = 1 n n=1,2,3, とならねばならない。

然るに 定理 ３・２・２ を観察すると、もし xr
2   1-xr

2 r = 1,2,3,ならば、一般的に

0 n  1 n n=1,2,3,

このことは、次なる４段論法が一般的には成立しないことを意味する。

0 n = 0n   ,  1 n = 1n   ,  0n = 1n    0 n = 1 n
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４ 左右の李係数の等値条件

　本章では 0 n = 1 n n =1,2,3, となる必要十分条件を求め、以ってディリクレベータ関数  z について

のリーマン予想が定理として成立することを証明する。

定理 ４・１

　臨界領域両端の李係数 0n , 1n  がそれぞれ次のようであるとする。

0n = Σ
k=1



 1- 1-
k

1 n

(1.)

1n = Σ
k=1



 1- 1-
k

1 -n

  = 0-n (2.)

但し、

 z  =  
2 1+z

 2
1+z

 z  =Π
k=1



 1-
k

z
k    k =1,2,3,  are zeros of  z (4.0)

すると、 0 n = 1 n n =1,2,3,  のための必要十分条件は Re k = 1/2 k =1,2,3, である。

証明

　最初に、ディリクレベータ関数  z の非自明な零点と完備化されたディリクレベータ関数 z の零点は

同じである。そして、 2r-1 = 1/2- i yr , 2r = 1/2+ i yr     r =1,2,3,  である。

I．十分性

　もし、 Re k = xr = 1/2    r =1,2,3,  ならば、定理 ３・２・２ より

02n-1 = 12n-1
 

　 =  2Σ
r=1



 1 - 
 yr

2+ 1/4
2n-1

1
Σ
s=0

n -1

( )-1 n-s-1 
2n -1

2 n -s -1
 yr

2- 1/4
2s+1

yr
2n-2s-2

(4.1)

02n = 12n

 =  2Σ
r=1



 1 - 
 yr

2+ 1/4
2n

1
Σ
s=0

n

( )-1 n-s 
2n

2 n -s
 yr

2- 1/4
2s 

yr
2n-2s (4.2)

即ち、 0 n = 1 n n =1,2,3,  となる。

　この結果、 0n = 0n , 1n = 1n  及び 定理 ３・１ を併せて次が完結する。

0n = 0n = 1n = 1n n =1,2,3, (4.3)

特に n =1 のとき、補題 １・３ より

Σ
r=1



 1/2- i yr

1
+

1/2+ i yr

1
 = 

0!
( )-1 1

 lim
z0

 
 z
 '  z

 = 0.0777839 (4.31)

II．必要性

　ここで、臨界領域内において 臨界線上の零点以外に 臨界線外の零点が存在したと仮定する。

このような零点の 1 組は次の 4 個から成るべきことが知られている。

1/2-s  is  , 1/2+s  is   0 < s < 1/2  ,  s > 0

すると 補題 １・３ より、次式が成立しなければならない。

Σ
r=1



 1/2- i yr

1
+

1/2+ i yr

1
 +Σ

s=1 1/2-s  is

1
+

1/2-s  is

1

　　 +Σ
s=1 1/2+s  is

1
+

1/2+s  is

1
 = 

0!
( )-1 1

 lim
z0

 
 z
 '  z
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i.e.

Σ
r=1



 1/2- i yr

1
+

1/2+ i yr

1
 +Σ

s=1  1/2s
2s

2

12s
+
 1/2s

2s
2

12s
 = 

0!
( )-1 1

 lim
z0

 
 z
 '  z

= 0.0777839 (4.32)

然るに、 0 < s < 1/2  に対して 0 < 12s < 12s < 2  であるから、

Σ
s=1  1/2s

2s
2

12s
+
 1/2s

2s
2

12s
 > 0

それ故、(4.32) は (4.31) に矛盾する。よって 臨界領域内では臨界線外の零点が存在してはならない。

その結果、 0 n = 1 n n =1,2,3,  は Re k  = 1/2    k =1,2,3,  のときにのみ成立することになる。

Q.E.D.

定理 ４・２ （ リーマン ）

　ディリクレベータ関数  z の非自明な零点を k   k =1,2,3,  とするとき、 Re k  = 1/2    k =1,2,3,

である。

証明

　リーマン予想が成立するところでは当然 0n = 0n = 1n = 1n n =1,2,3,でなければならない。

このための必要十分条件が Re k  = 1/2    k =1,2,3,  であることは 定理４・１ で証明された。

更に、これらの李係数は全て非負であり、李の基準を満たす。（ 補 遺  参照。）

よって、ディリクレベータ関数  z についてのリーマン予想は定理として成立する。

Q.E.D.
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補 遺

　定理 ４・１の証明 によれば、　もし、 Re k = xr = 1/2    r =1,2,3,  ならば、

02n-1 = 12n-1

　 =  2Σ
r=1



 1 - 
 yr

2+ 1/4
2n-1

1
Σ
s=0

n -1

( )-1 n-s-1 
2n -1

2 n -s -1
 yr

2- 1/4
2s+1

yr
2n-2s-2 (4.1)

02n = 12n

 =  2Σ
r=1



 1 - 
 yr

2+ 1/4
2n

1
Σ
s=0

n

( )-1 n-s 
2n

2 n -s
 yr

2- 1/4
2s 

yr
2n-2s (4.2)

確認計算

　ディリクレベータ関数の実部が 1/2 である零点を生成する一般式は知られていないが、最初の 10000 個が

Tomás Oliveira e Silva ( http://sweet.ua.pt/tos/zeta.html  ( 004-001) ) によって提供されている。

そこで、これを用いて (4.1) , (4.2) により 1  4 を計算すると、次のようになる。

 

 

これらを １・１の計算結果 と比べると、それぞれ有効 2 桁まで一致していることが分る。

cf.
　拙著 「 09 完備化されたディリクレベータの李係数 」 定理 ９・３・３ によれば、 Re k = 1/2   k =1,2,3,  

のとき

02n-1 = Σ
r=1



42n-2  1/4 + yr
2 ( )2n-1 /2 2

1  Σ
s=0

n -1

 ( )-1 s 4s  
2n -1

2s
y 2s

r

2

   n =1,2,3,

02n 　= Σ
r=1



42n-2 1/4 + yr
2 2n

y 2

 Σ
s=0

n -1

 ( )-1 s 4s  
2n

2s +1
y 2s

r

2

n =1,2,3,

これらは実数の平方和であるから、李の基準を満たしている。実は、これらと (4.1) , (4.2) は同値である。

例えば、
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03 = 2Σ
r=1



 1 -
 yr

2+ 1/4
3

-3yr
2 yr

2- 1/4  +  yr
2- 1/4

2

 = Σ
r=1



42 yr
2+ 1/4

3

1-24yr
2 + 144yr

4

 = Σ
r=1



42 yr
2+ 1/4

3

 1-12yr
2 2

04 = 2Σ
r=1



 1-
 yr

2+ 1/4
4

yr
4-6yr

2 yr
2-1/4

2
+ yr

2-1/4
4

 = Σ
r=1



 yr
2+ 1/4

4

yr
2 - 8yr

4 +16yr
6

  = Σ
r=1



42 yr
2+ 1/4

4

yr
2 4-16yr

2 2

従って、 (4.1) , (4.2) も李の基準を満たしている。

2026.02.20

河野 和

広島市

宇宙人の数学
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